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Abstract
We develop a methodology for deriving continuum partial differential equations for the
evolution of large-scale surface morphology directly from molecular dynamics simulations of
the craters formed from individual ion impacts. Our formalism relies on the separation between
the length scale of ion impact and the characteristic scale of pattern formation, and expresses
the surface evolution in terms of the moments of the crater function. We demonstrate that the
formalism reproduces the classical Bradley–Harper results, as well as ballistic atomic drift,
under the appropriate simplifying assumptions. Given an actual set of converged molecular
dynamics moments and their derivatives with respect to the incidence angle, our approach can
be applied directly to predict the presence and absence of surface morphological instabilities.
This analysis represents the first work systematically connecting molecular dynamics
simulations of ion bombardment to partial differential equations that govern topographic
pattern-forming instabilities.

1. Introduction

Uniform ion beam sputter erosion of a solid surface
often causes a spontaneously-arising pattern in the surface
topography that can take the form of corrugations or arrays
of dots [1, 2]. On the one hand, periodic self-organized
patterns with characteristic spacing as small as 7 nm [3]
have stimulated interest in this method as a means of sub-
lithographic nanofabrication [4]. The apparent scaling of
the characteristic spacing with ion energy [2] serves as an
additional motivation for the thorough understanding of the
low-energy regime. On the other hand, it is known empirically
that the same ion beam on the same surface can cause pattern
formation under some conditions (e.g. angle of incidence) and
surface smoothing under other conditions. A fundamental
understanding of the origins of roughening and smoothing
could therefore have important implications for engineered
surface smoothing [5] as well as simply avoiding roughening
when too much of the latter is a problem, e.g. in focused or
unfocused ion milling or sample preparation for cross-section
transmission electron microscopy [6].

The ion sputtering process results from the nuclear
collision cascade accompanying the ion impact. All existing
theories of sputter morphology evolution originate from
Sigmund’s 1973 model demonstrating the instability of a
planar surface to uniform ion beam erosion [7, 8]. According
to Sigmund, in one spatial dimension, the (normal) rate of
recession of an eroding surface v at a point x on the surface
is proportional to the total energy deposited there from impacts
at nearby points x′. This can be expressed

v(x) =
∫

E(x, x′) dx′, (1)

where E(x, x′) is the energy reaching x from an impact at x′.
For simplicity, Sigmund modeled the distribution of deposited
energy as centered a distance a below the impingement site
(along the initial ion direction) and decaying outward as a
Gaussian ellipsoid with standard deviations σ and μ in the
longitudinal and transverse directions, respectively. Because
ions penetrate the surface some distance before releasing their
energy, most of the energy is released ‘downbeam’ of the
impact point. Sigmund observed that this structure generically
implied a roughening instability, because valleys, being
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‘downbeam’ compared to hilltops, undergo more erosion. This
observation was investigated in more detail by Bradley and
Harper [9] (BH), who performed a linear stability analysis
of a flat surface undergoing erosion from Gaussian ellipsoid
collision cascades while simultaneously undergoing surface
relaxation toward flatness by surface diffusion. By expanding
the surface in a small curvature, they reduced Sigmund’s
non-local integral (1) to a series of local partial differential
terms, including a destabilizing second-order term. The same
expansion for the diffusional relaxation term is taken from
the classical Mullins/Herring [10, 11] theory of morphological
relaxation kinetics, yielding a fourth-order smoothing term.
This important result showed that the instability survives no
matter the amount of simultaneous relaxation, explained the
selection of specific dominant wavelengths, and additionally
predicted the oft-observed rotation of ripples from parallel-
mode (wavevector parallel to projected ion beam direction) to
perpendicular-mode (wavevector perpendicular to ion beam) at
high angles from normal incidence.

While the Bradley–Harper theory successfully explained
the qualitative aspects of ripple formation described above,
it failed in a number of ways to quantitatively agree with
experiments. These are by now well documented in the
literature, and include such discrepancies as the existence
of stable regimes; incorrect scaling of the wavelength with
quantities such as flux, energy, and temperature; and incorrect
prediction of the direction of ripple propagation. The reader
is referred to [2] for a recent summary of the situation. So
recent work in the field has been devoted to generalizing the
BH model to bring it into better agreement with experiment.
Broadly, the two main components of most sputter pattern
formation models can be represented by re-writing the erosion
velocity at a point x as

v(x) = vP(x) + vG(x). (2)

Here, on the one hand, vP(x) models the short-time or
prompt regime, concerned with local, single ion impacts
occurring over picoseconds, and the coarse-grained cumulative
effect of many individual ion impacts. For example, BH
expand the Sigmund erosive integral to first order in a small
curvature, while enhancements over the past decade include
higher-order expansions of the same [12–14], revisions to
Sigmund’s ellipsoids [15, 16], or the inclusion of non-erosive
elements [17–19]. On the other hand, vG(x) models the
long-time or gradual regime, which is concerned with global
relaxation dynamics occurring over much longer times. Here,
BH use Mullins surface diffusion, while more recent works
introduce theories of ion-enhanced viscous flow [20, 21] or a
damping term hypothesized to stand for an as-yet-unverified
long-range redeposition mechanism [22, 23]. However, there
is as yet no comprehensive combination of prompt- and
gradual regime theories that is consistent with the full range
of observed behaviors.

In this work we will concern ourselves almost exclusively
with the prompt regime component vP(x), where current
interest focuses on isolating the ‘crater function’—the function
describing the average change in surface shape due to the
impact of a single ion. Of particular interest is the study

of atomic redistribution. For high ion energies and masses,
it is well known that surface bombardment can lead to
formation of craters with rims, which indicate a large number
of atoms redistributed on the surface rather than sputtered.
At low ion energies, although well-defined craters do not
usually form, an ‘average’ cratering behavior with significant
atom redistribution persists [24, 25]. Furthermore, with
decreasing ion energy the relative importance of surface
transport compared to bulk transport processes increases
to the point where the former has major implications for
pattern formation. Critically, this redistributive behavior
has been largely neglected in analyses—although leading-
order approximations of this effect exist [17, 18, 16],
a comprehensive connection between microscopic impact
responses and the macroscopic evolution equation is still
missing1. Highlighting the importance of this point, recent
theoretical studies [16] have shown that small changes in the
shape of the crater function can lead to substantial changes in
the behavior of the macroscopic system. This is well illustrated
by early work on redistribution by Carter and Vishnyakov [17].
Using a model whereby off-normal ion incidence would cause
a downbeam surface current of atoms along the surface, they
showed that this ballistic atomic drift acts as a stabilizing force
for near-normal incidences, by driving mass ‘downhill’ into
valleys, and mitigating against preferential sputtering there.
In appropriate parameter regimes, this effect can make flat
surfaces stable at low angles, thus fundamentally altering the
stability landscape!

Because of the sensitive dependence of macroscopic
pattern-forming behavior upon the microscopic impact
response, it is imperative (a) to obtain accurate knowledge
of the erosive and (especially, due to their relative novelty)
redistributive components of the crater function, and then
(b) to rigorously connect these aspects of ion impact to the
associated vP(x) found in a continuum PDE. For the first
half of this program, while results from physical experiments
exist [27, 24], molecular dynamics (MD) simulations are
increasingly being used [18, 15, 25]. The unanswered question
that remains, then, is how to translate a known crater function
into continuum equations capable of predicting macroscopic
pattern-forming behavior. It is this question we address here.
We write the surface evolution as a flux-weighted integral of
the crater function [28, 16]:

vP(x) =
∫

I (u)g
(
u; ∇h,∇2h, . . .

)
du (3)

where I is the flux, u = (u, v) is a co-ordinate plane tangent
to the surface at x, and the crater function g = �h is the
average local change in topography for a single ion impact; it

1 We note, however, a significant body of work that takes an alternate
approach, treating redistribution in a phenomenological way by comparing it
to the process of sand dune evolution [26, 19]. There, with the assumption
of certain generic behaviors, equations are produced which, under numerical
integration, can be parametrically tuned to mimic experimental images.
However, in nature the system parameters are generally not tunable, but rather
given, and one would like a theory which predicts system behavior based on
the given parameters. Since these works are not explicitly connected to the
microscopic picture, they are difficult or impossible to rigorously compare with
experiments.
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Figure 1. An illustration of the conventions used in the
one-dimensional system, with local co-ordinates about a point x of
primary interest, and also about a nearby point x′. Here the vertical
dotted line corresponds to ‘up’ in the global laboratory co-ordinates;
thus θ is the experimental incidence angle, while φ is the local
incidence angle.

is always expressed with respect to the local co-ordinate plane,
and contains both the erosive and redistributive components
of the surface response. We then perform a ‘small curvature
expansion’ in a small parameter ε related to the ratio of impact
to relaxation scales, to obtain at last a local PDE of the form

vP =
(

I M̃ (0)
)

+ε∇S ·
(

I M̃ (1)
)

+ 1
2ε

2∇S ·∇S ·
(

I M̃ (2)
)

+· · · ,
(4)

where ∇S represent surface divergences, and the tensors M̃ (i)

are obtained directly from the crater function. Crucially,
these terms are simply combinations of the moments of
the single ion response functions, which are obtainable
directly via experiment or MD simulation. Thus, this work
presents a unified framework that is grounded in—and directly
incorporates—the response of the surface to single ion impacts.

2. Theory—one dimension

In this section we develop a continuum approach to sputtering
that depends, ultimately, only on the moments of the responses
to a single ion impact. Thus, it is a natural framework in which
to incorporate the results of molecular dynamics simulations.
Because of some subtleties in the theory, we first develop
it thoroughly in one independent spatial dimension here,
before generalizing to two independent spatial dimensions in
section 3.

2.1. Preliminaries

In figure 1, we see a target surface being bombarded by ions
at a lab frame incidence angle of θ , and we introduce a fixed
vector eB that points at the irradiation source. At any particular
point x on this surface, the tangent is given by t, the normal
by n, and the local incidence angle—the angle between eB and
n—is written as φ and satisfies cos φ = eB · n. Furthermore,
we may construct about x a local co-ordinate system (u, w)

associated, respectively, with the basis vectors t and n. Thus,
in the vicinity of x, the surface can be described as w = h(u),

and surface points x′ near x can be written

x′ = (u, h(u)). (5)

Furthermore, we assume an a priori knowledge (whether
from experiment, MD simulation, or otherwise) of the crater
function describing the average surface response to a single ion
impact. To describe the effect of an impact at the point x′ (not
necessarily related to x), we write

�h(u′) = g
(
u′;S(x ′)

)
(6)

(note that the point x′, being distinct from x, possesses
an associated distinct local co-ordinate system (u′, w′)—this
will become important shortly). In this function the first
argument u′ refers to the u′-dependence of �h, while the
second argument S(x ′) denotes a parametric dependence of the
function g on the geometry of the surface near x′. In particular,
g must depend at least on the local incidence angle φ(x′) for
consistency with the sputter yield curve; it may also depend
on higher derivatives such as curvature (we note, however, that
in Sigmund’s mechanism, g is independent of curvature: the
curvature dependence of vP there comes from integrating g
over a curved surface).

2.2. Continuum erosion rate

Given the representation (6) describing the effect of a single
ion impact at x′, let us now construct a continuum model that
gives the prompt contribution vP to the erosion rate at x due
to a flux of ions. Because the function g describes the surface
response caused by impact from a single ion, we assume that
the evolution at x due to a flux I of ions can be obtained by
integrating the responses arising from many impacts at points
x′ near x, multiplied by the strength of the flux at those points2.
However, the process is complicated by the nature of g, which
is only known in terms of the local co-ordinate system about
the impact point. Thus, while our question on the erosion rate
at x is most naturally posed in the (u, w) co-ordinates anchored
there, the responses due to impacts at nearby points x′ are
most naturally expressed in the respective co-ordinates (u′, w′)
centered on those points. Thus, a conversion between the two
co-ordinate systems is required. To perform this conversion,
we introduce a function

c(u) = (
x − x′) · t′ = −ut ′

u(u) − h(u)t ′
w(u), (7)

which represents the lateral co-ordinate of the point x as seen
from the nearby point x′ (see figure 1), and where t ′

u and t ′
w are

just the components of t′. With this tool at our disposal, we can
now easily write down the integrated behavior at x in the form3

vP(x) =
∫ ∞

−∞
R(u) du =

∫ ∞

−∞
I (u)g (c(u);S(u)) du (8)

2 Mathematically, this approach is essentially taking g to be the Green’s
function for the ion bombardment process. Physically, it implies an assumption
that the surface has approximately uniform structure, allowing the neglect
of variations due to local material history (e.g., poor bonding due to prior
impacts).
3 We note that there is a canceled factor of n · n′ in equation (8): we multiply
the integrand by this factor to account for the projection of the response at x′
onto the normal n, but then we divide to account for the length of the surface
element at x′.
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(here R(u) = I (u)g(u) is introduced purely for syntactical
reasons). Finally, we note that under irradiation with a
uniform-intensity ion beam, the projected ion flux I (u) at the
point (u, h(u)) depends only on the local incidence angle as

I (u) = I0eB · n = I0 cos φ(u), (9)

where I0 is the flux through a plane perpendicular to eB, and
cos φ describes beam dilution due to off-normal incidence.

Before proceeding, we make a couple of comments about
the quantity c(u). First, we note that this construction is
not present in existing theories based on Sigmund’s model
of erosion. This is because Sigmund’s model posits an
underlying physical picture of energy release that does not
depend on surface shape—i.e., the model is co-ordinate
independent. Here, in contrast, we have no underlying
co-ordinate independent model, and the surface response is
expressed in terms of the local co-ordinate system at the point
of impact; it is this constraint that necessitates c(u). Second,
we note that if the surface is nearly flat (see below), then
h(u) and tw(u) are nearly zero, and hence as a first-order
approximation c(u) ≈ −u.

2.3. Multiple-scale analysis

The first key step in our argument is to make the common
observation that the typical length scale of observed surface
structures is much larger than the length scale of a typical ion
impact—i.e., on the scale of the ion impact range, the surface
shape S varies slowly. Because the integrand R(u) depends
both on the shape of the crater function, and also on the shape
of the surrounding surface, it therefore contains two disparate
length scales. To formally encode these notions, we introduce
‘small’ or ‘slow’ space variables (U, W ) given by

[
U
W

]
= ε

[
u
w

]
, (10)

where ε is a small parameter taken to be the ratio of the
average ion penetration depth to a length scale associated with
macroscopic relaxation (see appendix A for more details).
Thus, on the scale of the crater size (fast variable u), the surface
shape varies slowly (slow variable U ). We use these variables
to express the integrand of (23) as

R(u) = R̃(u, U) = Ĩ (U)g
(

c̃(u, U); S̃(U)
)

. (11)

While this looks complicated, here tildes simply indicate that
(u, w) have been replaced by (U, W ) where appropriate: i.e.

Ĩ (U) = I (u)

S̃(U) = S(u)

c̃(u, U) = −(u, h(U)) · t′(U) = c(u).

(12)

Together, the combination of variables u and U in
equations (11) and (12) indicate that, on the scale of the impact
range, the surface shape—and hence the height, tangent,
normal, and flux—varies slowly in the vicinity of the point x.

This leaves the spatial dependence of the surface response as
the only fast-varying quantity.

Our mathematical approach to exploiting this disparity in
length scales is thus slightly more formal than that found in the
literature to date. However, we do not employ this precision
for its own sake, as we shall see. Because the function
R̃(u, U) depends on the small variable U , we now immediately
Taylor expand R̃ in U , obtaining after some substitutions the
equivalent expressions

R̃(u, U) = [R̃]U=0 + U
[
∂U R̃

]
U=0

+ 1
2 U 2

[
∂UU R̃

]
U=0

+ · · ·
R(u) = [R̃]U=0 + εu

[
∂U R̃

]
U=0

+ 1
2 (εu)2

[
∂UU R̃

]
U=0

+ · · · .

(13)

2.4. Expression in terms of effective moments

We now come to the second key step of our argument. Inserting
equation (13) into equation (8), we see that the (scalar)
normal velocity vn is obtained from the two-argument function
R̃(u, U) in three stages: first, one Taylor expands R̃ about
U = 0; second, one performs the substitution U → εu; and
last, one integrates in u. However, since u and U are formally
independent variables, the ordering of the U -derivatives and
u-integration can be reversed! So we alter the ordering of
the operations by integrating first. Dispensing now with
the notation R, we then obtain after some manipulation the
following

vP(x) = I0

[(
M̃ (0) cos φ

)
+ ε∂U

(
M̃ (1) cos φ

)

+ 1
2ε2∂UU

(
M̃ (2) cos φ

)
+ · · ·

]
U=0

, (14)

where the effective moments M̃ (i) are written in the form

M̃ (0)(U) =
∫

g (c̃(u, U), U) du

M̃ (1)(U) =
∫

g (c̃(u, U), U) u du

M̃ (2)(U) =
∫

g (c̃(u, U), U) u2 du

. . . .

(15)

2.5. Conversion to actual moments

Equations (14) and (15) are the central result of this section.
However, one small problem remains—the quantities M̃ (i) are
moments of the compound function g(c(u)); our stated goal
was to seek an expression using the true moments M (i) of the

4
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original crater function g(u):

M (0)(U) =
∫

g (u; S(U)) du

M (1)(U) =
∫

g (u; S(U)) u du

M (2)(U) =
∫

g (u; S(U)) u2 du

. . . .

(16)

So, to reach our final goal, we perform the change of variables

u → c−1(u, U) = −tu(U)−1 [u + h(U)tw(U)] (17)

in the integrations (15). After some simple but tedious
calculation, this allows us to write the effective moments M̃ (i)

in terms of the true moments M (i) via the relations

M̃ (0) = −(−tu)
−1

[
M (0)

]

M̃ (1) = −(−tu)
−2

[
M (1) + (htw) M (0)

]

M̃ (2) = −(−tu)
−3

[
M (2) + 2(htw)M (1) + (htw)2 M (0)

]
. . . ,

(18)

where the extra factor of (−tu)−1 comes from the result of the
co-ordinate change on du, and the negative sign comes from
the corresponding need to flip the integral.

2.6. Comments

As claimed in the introduction, equations (14) and (18) indicate
that the surface dynamics of the prompt regime vP(x) can be
reduced to a local expansion involving only the (pure) moments
of the crater function g(u). This result yields several benefits
worth summarizing. First, in this form, the connection with the
prompt regime of ion impact is clear, and since the moments
M (i)(U) are exactly the kind of data obtainable with molecular
dynamics simulations, the latter may be directly compared with
theoretical models. Second, this formulation reveals that full,
fitted descriptions of the crater functions are not needed—
only the integrated moments show up in the continuum theory.
This significantly reduces the number of simulations needed
to obtain well-converged data. Last, the use of a formal small
parameter ε leads not only to expansions of small quantities
(performed previously), but expansions arranged in powers of
ε. Because the number of terms associated with increasing
powers of ε in the expansion (14) increases rapidly, it is
advantageous to show that such terms are formally small by
powers of ε compared to lower-order terms, so that the series
can usually be justifiably truncated at a low order4.

4 In certain circumstances, equations truncated at low order in this manner
can be ill-posed, when special modes known as cancelation modes exhibit
nonlinear instability due to cancelation of the limited number of nonlinear
terms (see, e.g. [29]). Hence, it can be necessary in those cases to retain
even higher-order nonlinearities to regularize the problem. However, in
more frequent and less pathologic situations, it is often accurate enough
to neglect them. See, for illustration, a comparison between the nonlinear
approximation (42) and the full integral equation (23) in [30].

Figure 2. An illustration of the two-dimensional co-ordinate system.

3. Theory—two dimensions

Having covered the essential intuitive concepts of our approach
in one dimension, we now briefly extend the theory to two
dimensions so that it may be usable in realistic systems. The
1D approach maps step-by-step to the 2D case, except that
tensor quantities must now be used instead of scalars.

3.1. Preliminaries

In figure 2 we see a two-dimensional target surface under
irradiation, and we again start by defining a fixed vector eB

that points in the direction of the ion source. On this surface,
at a point x of interest, we again define the normal vector n
and the local incidence angle φ satisfying cos φ = eB · n. We
then construct a local co-ordinate system about x using eB and
the unit normal n. Following [9], we observe that the most
natural basis vectors one may use to span the tangent plane are
the downbeam and crossbeam vectors denoted respectively as
tu and tv , and given by

tu = (−eB + (eB · n) n)

|−eB + (eB · n) n|
tv = n × tu;

(19)

i.e., tu is just the unit projection of the beam onto the surface,
while tv is orthogonal to n and tu . If we assign co-ordinates
u = (u, v,w) corresponding respectively to the directions
[tu, tv, n], then surface points x′ in the vicinity of x can be
written

x′ = (u, v, h(u, v)) . (20)

This co-ordinate system is natural theoretically because the
beam direction vector eB is the only fixed object in the system,
and so it makes sense to anchor our co-ordinate system to
that direction. Additionally, and perhaps more importantly,
it is natural for connection with computations because MD
simulations are usually performed with a reference direction
corresponding to the beam source.

3.2. Basic model

We start our analysis by again imagining an ion impact at some
point x′ near to x, and describing the resulting surface response

5
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by the crater function g, which this time is a function of a
vector argument u′ rather than a scalar argument u′. In the
local co-ordinates about the impact point x′, we write

�h(u′) = g
(
u′; S(x′)

)
, (21)

where S again indicates a parametric dependence on the
surface shape at x′ (local incidence angle, curvatures, etc).
From here the continuum description of the normal velocity
at x is again given by integrating the crater function against
the flux. As before, to obtain the response at x to an impact
at x′, we must calculate the lateral co-ordinates of x from the
perspective of x′. Thus, we introduce the (vector) quantity
c(u), whose purpose is the same but whose form is somewhat
more complicated than the scalar version:

c(u) = −
[

t′u(u) · (u, v, h)

t′v(u) · (u, v, h)

]

= −
{[

t ′
uu t ′

uv

t ′
vu t ′

vv

]
u +

[
t ′
uw

t ′
vw

]
h(u)

}

= −{B(u)u + b(u)h(u)} , (22)

where t ′
uv is the v-component of the tangent tu , and so on. With

this notation, we then immediately write down the integral
formula for the normal velocity at x:

vP(x) =
∫

R(u) du =
∫

I (u)g (c(u); S(u)) du, (23)

where R(u) is again a notational abbreviation of the integrand.
Finally, again, under irradiation with a uniform-intensity beam,
the local projected ion flux depends only on the local incidence
angle,

I (u) = I0eB · n(u) = I0 cos [φ(u)] . (24)

3.3. Separation of scales

Since the surface is slowly-varying over scales comparable to
the size of the impact crater, we again introduce the small
parameter ε, and ‘small’ or ‘slow’ space variables

U =
[ U

V
W

]
= ε

[ u
v

w

]
, (25)

so that, again, U is small in the vicinity of the ion impact. Using
this new variable, we explicitly characterize the fast and slow
spatial dependencies in the integrand by writing

R(u) = R̃(u, U) = Ĩ (U)g
(

c̃ (u, U) ; S̃(U)
)

, (26)

with

Ĩ (U) = I (u)

S̃(U) = S(u)

B̃(U) = B(u)

b̃(U) = b(u)

c̃(u, U) = −{B̃(U)u + b̃(U)h(U)} = c(u).

(27)

This again leads directly to a Taylor-series expansion of
R̃(u, U), and we obtain the expression

R(u) = [R̃]U=0 + ε
[
∇U R̃

]
U=0

· u

+ 1
2ε2[∇U∇U R̃]U=0 · u · u + · · · . (28)

Note that, in two dimensions, the derivatives become gradients,
such that ∇U∇U R̃ is a rank-two tensor, so that increasing terms
of this expansion involve tensors of increasing order. Also note
that ∇U is just the surface gradient, which is often written ∇S, a
notation we used in section 1 to better serve the casual reader.

3.4. Expression in terms of effective moments

Reaching the stage where we make substitutions, we observe
that the U-gradients and u-integrations in (28) can be reversed,
and we obtain after some manipulation the form

vP(x) = [
(I M̃ (0)) + ε∇U · (I M̃ (1))

+ 1
2ε2∇U ·∇U · (I M̃ (2)) + . . .

]
U=0

(29)

(note that gradients became divergences under the reversal of
order!), with the effective moments M̃ (i) given by

M̃ (0) =
∫

g (c(u);S(U)) du

M̃ (1) =
∫

g (c(u);S(U)) u du

M̃ (2) =
∫

g (c(u);S(U)) u ⊗ u du

. . . .

(30)

Here, the terms u, u ⊗ u, and their followers are now outer
products of increasing order; i.e.,

u =
[

u
v

]
, u ⊗ u =

[
u2 uv

uv v2

]
, . . . .

3.5. Reduction to actual moments

Our last step is to express the effective moments M̃ (i) in terms
of the actual moments M (i):

M (0)(U) =
∫

g (u; S(U)) du

M (1)(U) =
∫

g (u; S(U)) u du

M (2)(U) =
∫

g (u; S(U)) u ⊗ u du

. . . .

(31)

Again, we do this by introducing into the integrals of (30) a
co-ordinate transform, here given by

u → −c̃−1(u, U) = −B̃−1(U)
[
u + h(U)b̃(U)

]
. (32)

6
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After some simple but tedious calculation, this gives the
relations, now using Einstein notation,

M̃ (0) = Q
[
M (0)

]

M̃ (1)

i = Q
(
−B̃−1

ik

) [
M (1)

k + hb̃k M (0)
]

M̃ (2)
i j = Q

(
−B̃−1

ik

) (
−B̃−1

jl

)

× [
M (2)

kl + h
(

b̃l M
(1)

k + b̃k M (1)

l

)
+ h2b̃k b̃l M

(0)
]

. . . ,

(33)

where

Q = det
[−∇uc̃−1(u, U)

] = det[−B̃−1(U)] = [det B̃(U)]−1

(34)
is the Jacobian of the co-ordinate transformation function.
So again, while the mathematics is more complicated in two
dimensions, we see that surface evolution depends only on
appropriate moments of the crater function g(u). We do note,
however, that since the outer products u ⊗ u ⊗ · · · contain
many symmetries, the moments M (i) will also contain them;
furthermore, because the statistical surface response to an
ion impact should be approximately even in the crossbeam
direction v, half of the entries in each tensor M (i) will vanish
(namely, those associated with odd powers of v).

4. Example applications

Here we flesh out the actual calculation procedure associated
with the methodology of section 3, apply it to some existing
theoretical models to demonstrate its agreement, and then
develop a method for applying it directly to data from
molecular dynamics simulations. Before doing so, however,
we wish to make one point on the difference between erosive
and redistributive processes. Indeed, the reader will have
noticed that the mathematics we have used up to this point
has been completely general, depending only on the crater
function g(u). However, as has been noted above, this function
will naturally describe surface evolution due to two discernible
prompt regime mechanisms: (a) mass ejection or sputtering,
and (b) local mass redistribution. From the perspective of a
generic microscopic picture, neither of these effects ought to be
considered as more important than the other. However, because
the sputter yield, which has been measured experimentally for
many decades, is based on mass ejection and is insensitive to
redistribution, the former has been subject to detailed study,
while the latter has been more neglected until recently. Thus,
one of the aims of this work is to treat both effects with equal
rigor. To this end, then, we may simply write

g = gerosion + gredist.. (35)

Expansions based on the former quantity, then, should agree
with (or improve upon) existing expansions of Sigmund’s
ellipse model, while expansions of the second quantity should
produce a comprehensive, microscopically-inspired model of
the redistributive process. From a modeling perspective, the
two components can be treated independently, as we shall see.

4.1. Calculation procedure

Given the moments of the crater function g, we wish to
evaluate successive terms of the expansion (29). In addition to
the moments, however, a few additional geometric quantities
are needed, including B̃, b̃, and trigonometric functions of φ.
To obtain these, we begin by observing that, at any point x on
the surface, with local incidence angle φ0, we have

eB = (− sin φ0, 0, cos φ0) . (36)

Next, in the vicinity of x, the interface is described by the
slowly-varying function

W = H (U, V ), (37)

which allows us to express the normal n in the usual way as

n =
(− ∂ H

∂U ,− ∂ H
∂V , 1

)
√

1 + (
∂ H
∂U

)2 + (
∂ H
∂V

)2
. (38)

At this point tu and tv are given by relations (19), which
allows us to construct B̃(U) and b̃(U). Finally, trigonometric
functions of φ, evaluated in the vicinity of x, are obtained using
basic vector identities on eB (which is constant) and n (which
varies):

cos [φ(U)] = eB · n

sin [φ(U)] = |eB × n| . (39)

With all of these quantities, it is now a simple but tedious
matter to make the necessary substitutions of moments,
matrices, and trigonometric quantities into (29), take the
divergences, and evaluate at U = 0. The process may be
simplified somewhat if we initially expand H (U, V ) as a
Taylor expansion in U and V :

H (U, V ) ≈ 1
2

(
HUU U 2 + 2HU V U V + HV V V 2

)
+ 1

6 (HUUU U 3 + 3HUU V U 2V + 3HU V V U V 2

+HV V V V 3) + · · · , (40)

with all derivatives of H treated as constants evaluated at 0.
Then, since we will ultimately be evaluating divergences in
(U, V ) at zero, it is only necessary throughout the calculation
to keep terms in the small U and V up to the order of the
moment being evaluated.

4.2. Comparison with existing models

Since our mathematical approach is slightly different than that
established in the literature, we first apply our methodology to
existing models of erosion and redistribution, showing that one
obtains results identical to those already in the literature. In
each case, we leave our results in the local co-ordinate system,
since this is sufficient for comparison. Conversion to the lab
frame is discussed in appendix C.

On the erosive side, we consider Sigmund’s ellipsoidal
energy-release mechanism. Following [9], we may write down
the crater function describing response to the impact of a single

7



J. Phys.: Condens. Matter 21 (2009) 224017 S A Norris et al

atom in the form

g = (�ε f ) a2

(2π)3/2 σμ2

√
1 + H 2

U + H 2
V

× exp
{− 1

2 a2
μ

[
(u cos φ + h sin φ)2 + v2

]
− 1

2 a2
σ [u sin φ − (1 + h cos φ)]2

}
, (41)

where the extra factor of
√

1 + H 2
U + H 2

V projects the
responses at all nearby points onto the normal at the point
of impact. Letting h(u, v) = ε−1 H (U, V ) according to
equation (25), we obtain the appropriate moments of g (see
calculations outlined in appendix B), and then insert these
moments into the algebra of section 3 to obtain the result to
first order in ε:

v
Sig.

P = (I0/n)Y0 (φ) {cos (φ)

− ε [�1 (φ) HUU − �2 (φ) HV V ]} , (42)

with n, Y0, �1, �2 defined exactly as in Bradley and Harper [9].
Turning to redistributive effects, a primary motivation of

this work, we consider the surface currents due to ballistic
atomic drift envisioned in Carter and Vishnyakov (CV) [17].
These authors assume that some proportion α of the lateral
component of incoming ion momentum is converted to an
atomic surface current j, directed downbeam from the impact
point, and having the form

j = α I (φ) sin φ tu = (α I0) cos φ sin φ tu . (43)

Now, we see immediately that this formulation does not
constitute a model for the actual surface response. Instead, it
is really a theory on the form of the first moment of the surface
response—indeed, we have simply M (1)

redist. = j. So, to pose the
surface current hypothesis within our framework, we ignore the
actual crater shape, and simply let:

M (0)
redist. = 0

M (1)

redist. =
[

α sin φ

0

]
,

(44)

(the zeroth moment is zero by definition, by conservation
of mass). Inserting these into the algebra of section 3, the
resulting PDE, in two dimensions, is

vCV
P = ε (α I0)

[
cos (2φ0) HUU + cos2 (φ0) HV V

]
. (45)

This term agrees with the two-dimensional analysis of the
CV mechanism by Davidovitch et al [16], after converting
to the co-ordinate system used there (CV only studied one
dimension). Thus, while our approach is slightly different
from preceding approaches in that it deals only with a surface
response rather than the underlying models, it returns the same
answers when those models are recast in terms of responses or
moments.

4.3. Application to molecular dynamics simulations

A general model of redistribution akin to Sigmund’s model of
erosion would be highly desirable. However, since no such
model currently exists, and since ascertaining the accuracy

of even Sigmund’s model is difficult, there is good reason to
consider avoiding models entirely and turning instead directly
to direct measurements. Here, while descriptions of g(u) can
and have been obtained experimentally [27], in general the
separation into erosive and redistributive components requires
the use of MD simulation. Thus, we turn our consideration
here to the task of obtaining—for both processes—the
crater functions and their moments from molecular dynamics
simulations. From this perspective, one observes that it is easy
to write expression (35), but less obvious how practically to
separate the two components of g from a given MD data set.
Thus, we here propose a simple technique one could use to
do so. Assuming one has available the initial (pre-impact) and
final (post-impact) positions of each atom, the first step is to
divide the atoms based on whether or not the final location is
still attached to the target. If so, the atom is classified as a
‘redistributed’ atom, while if not, it is classified as a ‘sputtered’
atom. Then, the assumption of constant density permits one to
determine the height change entirely by the lateral components
of the displacements of all the atoms. Furthermore, because
we actually do not need g itself, but only its moments, we
can most effectively obtain the latter by approximating g as
an appropriate sum of delta functions over the surface, located
at the projected position of each atom.

The erosive component of the crater function, gerosive, is
simply the average result of the removal of many single atoms.
For the purposes of obtaining moments of this function, we
approximate gerosive by placing at the projected initial position
uI

j = (uI
j , v

I
j ) of each sputtered atom j a delta function δ(uI

j )

of magnitude equal to VSi, the volume of a silicon atom. This
gives

gerosive(u) = −VSi

∑
j

δ
(
u j

)
(46)

which, when integrated against the various outer products
u⊗u . . . to obtain the moments (31), will simply pick up point
contributions at the initial atomic positions. Thus, if N is the
number of sputtered atoms, then the erosive moments M (i)

erosive
may be written as sums rather than integrals in the forms

M (0)

erosive = −VSi

N∑
j=1

1

M (1)
erosive = −VSi

N∑
j=1

uI
j

M (2)
erosive = −VSi

N∑
j=1

uI
j ⊗ uI

j

. . . .

(47)

For the redistributed atoms k, the process is nearly the
same, except that after being moved from a projected initial
position uI

k , the atom resettles at its projected final position uF
k .

So we approximate gredist. by writing

gredist. = VSi

∑
k

[
δ
(
uF

k

) − δ
(
uI

k

)]
. (48)

8
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Upon integration of (48) over the (u, v) co-ordinate plane, we
shall obtain the redistributive moments, also, as sums rather
than integrals:

M (0)
redist. = 0

M (1)

redist. = VSi

M∑
k=1

(
uF

k − uI
k

)

M (2)

redist. = VSi

M∑
k=1

(
uF

k ⊗ uF
k − uI

k ⊗ uI
k

)

. . . .

(49)

Together, equations (47) and (49) give all the information
required.

The approach described here has a number of benefits.
First, it avoids the conversion of the atomic displacement set
generated by an MD simulation to a height map associated
with a continuum surface. For example, one popular method
of performing this conversion involves the use of a ‘simulated
AFM tip’ to probe the target and thereby approximate the
location of a ‘surface.’ However, this technique is extremely
sensitive to the nature of the tip, and can overestimate the
size of hills and underestimate that of valleys; our approach
avoids any such errors. Second, as mentioned previously this
method implicitly assumes that density is constant throughout
the impact process. While this at first might seem a
weakness rather than a strength, we argue that, at the fluences
required to develop the topographic patterns of interest here,
a steady-state density profile must invariably develop on the
surface. Hence, densification effects ought similarly to tend to
zero over enough properly-designed MD simulations, and so
ignoring density variations that do persist may actually hasten
convergence. Last, with this method one can easily neglect the
contribution of implanted ions to the surface response, which
again, over many experiments, must tend to zero anyway.

5. Conclusions

We have introduced a comprehensive framework for coarse-
graining the microscopic picture of single ion impact into the
prompt regime contribution vP(x) to a continuum model of
surface erosion, based only on the moments of the single-
impact crater function. Our framework addresses both erosion
and redistribution, and works equally well with theoretical
models such as Sigmund’s, or moments obtained numerically
via MD simulations. The advantages of this approach are
fourfold. First and most importantly, writing things in terms
of the moments of crater functions explicitly connects the
microscopic impact to the macroscopic dynamics, a feature
missing until now in treatments of redistribution. Second,
it greatly simplifies comparison with molecular dynamics—
as we have demonstrated, moments are easy to acquire, and
converge after fewer trials than a full description of the crater.
Third, a separation of erosive and redistributive components
highlights exactly the way these aspects of ion impact compete
to determine the macro-scale pattern dynamics. Fourth,
while somewhat subtle, the formal use of a small parameter

makes clear the relative magnitudes of the multitude of terms
which arise from the small curvature expansion. Looking
forward, our goal is to apply our methodology to actual
molecular dynamics measurements of crater functions so as
to obtain a specific prediction—free of tuning parameters—for
vP(x). This, when paired with an appropriate gradual regime
contribution vG(x), will allow direct comparison between the
pattern-forming behavior predicted by MD simulations, and
that observed in physical experiments performed in the same
environmental conditions used in the simulation. This will
shed light on the way that crater shape affects continuum
predictions, leading to better models of both erosion and
redistribution that occur during the impact process.
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Appendix A. Estimating the small parameter ε

While the main text of this work focus almost entirely on the
prompt regime vP(x), the small parameter ε is obtained as a
ratio of length scales associated with both vP(x) and vG(x). In
the prompt regime, erosion due to ion impacts can be described
by the equation

vP(x) = v0 × G(S), (50)

where v0 is a characteristic surface erosion velocity, and G(S)

is a non-dimensionalized function containing the (integrated)
geometry dependence of the problem. In contrast, in the
gradual regime, one may consider ion-enhanced surface
viscous flow [20], which is modeled by the equation

vG(x) = −γ d3

3η
× ∇2

SK, (51)

where γ is the surface energy, d the viscous-layer depth, η

the viscous-layer viscosity, and ∇2
SK is the surface Laplacian

of the mean curvature. For a theory including both processes
(e.g. [31, 32]), the ‘surface-diffusion-like’ coefficient γ a3/η

may be balanced with the driving erosion velocity �ε f to
obtain a characteristic macroscopic length scale L, satisfying

L = d

(
γ

v0η

)1/3

. (52)

Upon comparing this with a microscopic length scale given by
the penetration depth a ≈ d , we find that ε, the ratio of micro-
to macro-scales, is estimated to be

ε =
(

v0η

γ

)1/3

. (53)

Under what conditions is this, in fact, small? A model for the
scaling of the characteristic velocity (loosely following [9]) is
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v0 = L E F , where F is the flux of ions through a plane normal
to the ion beam source, E is the energy per incident ion, and
L a proportionality constant relating the erosion velocity to
the power deposition. Looking over the components of ε, we
observe that γ is a material constant, while c is also essentially
constant, depending only on the irradiating and target atoms
over a wide range of ion energies. Finally, the viscosity η scales
inversely with the flux over a wide range of fluxes. Hence, the
only parameter left in ε is the energy E , and so we expect ε to
be small in the low-energy limit.

Appendix B. Sigmund moment calculations

We begin by writing the Sigmund response (41) in the compact
form

g = γ e−[αy2+β(x−δ)2] (54)

where, after letting h = ε−1 H (U, V ), we follow the
conventions in Bradely and Harper [9] to obtain

α = 1
2 a2

μ

β = 1
2 B1

δ(H ) =
(
A − 2C H

ε

)
B1

γ (H ) = (�ε f )
(
aσ a2

μ

)
(2π)3/2

√
1 + H 2

U + H 2
V

× exp

{
−1

2

[
a2

σ + 2B2
H

ε
+ 8D

(
H

ε

)2

−
(

A − 2C H
ε

)2

B1

]}
,

(55)

where
A (φ) = a2

σ sin φ

B1 (φ) = a2
σ sin2 φ + a2

μ cos2 φ

B2 (φ) = a2
σ cos φ

C (φ) = 1
2

(
a2

μ − a2
σ

)
sin φ cos φ

D (φ) = 1
8

(
a2

μ sin2 φ + a2
σ cos2 φ

)
.

(56)

From the form (54), the first few moments are then easily
calculated, with

M0 = γ (H )

√
π2

αβ

M1
x = M0 (δ)

M2
xx = M0

(
1

2β
+ δ2

)

M2
yy = M0

(
1

2α

)
.

(57)

These moments are then used for the calculations in the main
text.

Appendix C. Conversion to lab co-ordinates

In the main text, results were presented in the local co-
ordinate system for consistency and brevity. However, for
linear, weakly-nonlinear, or fully-geometric investigation, it
is obviously desirable to express equations in the global co-
ordinate system. This, however, is simply a straightforward
(if tedious) geometric exercise. A discussion of the process in
the context of sputtering is available in [13]; here, we simply
repeat the essential points.

To convert to the lab frame, we simply need to express the
normal, tangents, and local beam intensity I in terms of lab-
accessible quantities, namely θ , hx , and hy . We already saw
that I = I0eB · n, and some further algebra reveals that

T = [tu, tv, n] =

⎡
⎢⎢⎣

(1+h2
y) sin θ−hx cos θ

g sin φ

hy cos θ√
g sin φ

−hx√
g

−hx hy sin θ−hy cos θ

g sin φ

sin θ−hx cos θ√
g sin φ

−hy√
g

hx sin θ−(h2
x +h2

y) cos θ

g sin φ

hy sin θ√
g sin φ

1√
g

⎤
⎥⎥⎦ ,

(58)
where

g = h2
x + h2

y + 1

cos φ = (hx sin θ + cos θ) /
√

g

sin φ = [
(sin θ − hx cos θ)2 + h2

y

]1/2
/
√

g.

(59)

With this information, the divergence operators are converted
from the local frame to the lab frame via

∇U = ∂

∂Ui
= ∂x j

∂Ui

∂

∂x j
= B̃T ∇x. (60)

Note that, for surface divergences, since we are only interested
in the tangential directions, we only use the upper-left 2 × 2
block of T , which is here denoted B̃ as in the main text.
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